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Highlights

• Intuitive limiting model inaccurate, misleading convergence tests.
• Correct model must account for holes with finite radius.
• Modified FEM treats domains with holes without meshing holes.
• Extremely fast FE convergence because unknowns are smooth.
• Method recovers forces on hole boundaries better than asymptotic limit.

Abstract

The modeling challenges arising when the problem domain has small supported holes in it are considered through a
representative membrane problem. Such problems are sometimes modeled intuitively in engineering practice by taking the limiting
case of holes with zero radius. This intuitive model is incorrect, since it has no mathematical solution. It is demonstrated, however,
that finite element approximations based on it can still satisfy verification tests and appear to converge, leading to erroneous
recovery of quantities of interest. This points to the need for an alternate approach where the holes of finite radius are properly
incorporated in the modeling, and robustness with respect to the radius is maintained. To this end, a computational method
is presented which combines analytic knowledge of the solution singularities with finite element approximation of its smooth
components. Theoretical and numerical results are provided, establishing the efficacy and robustness of the method in extracting
quantities of interest. The method converges both with respect to the size of the holes and the mesh discretization parameter, and
provides a more accurate alternative to using the asymptotic limit.
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Fig. 1. Sample domain.

1. Introduction

We consider the flat prestressed membrane Ω shown in Fig. 1, attached to supporting discs ωi , i = 1, 2, . . . , n,
with distributed normal stress g acting on its boundary ∂Ω (i.e. the membrane has Dirichlet conditions on ∂ωi and
Neumann conditions on ∂Ω ). Our goal in this paper is to analyze two different approaches to modeling this problem
in the case that the radii σi of the discs ωi are small. We address both the choice of underlying mathematical model
and of the method of discretization. Our results apply to several mathematically equivalent problems such as heat
transfer in the presence of cooling pipes, anti-plane elasticity analysis of material reinforced by steel wires or rods,
electrostatics problems with wires running through the domain, etc., all of which can be addressed by the same models
we consider.

For most problems, a selection or hierarchy of different mathematical models is usually available. The general
principle behind which one to choose involves balancing the complexity, accuracy and ease of computational
resolution of the model with the reliability of available input data and the nature and accuracy of the output information
desired. In particular, any model and its method of discretization should be judged in terms of the goals of the
computation, i.e. how accurately these deliver specific user-selected quantities of interest (QoI), as opposed to other
possible outputs.

Model validation refers to estimating the reliability of the underlying mathematical model. In engineering, this
may be accomplished by some combination of intuition, experience, qualitative appraisal of the solution (e.g. through
graphs and figures or comparison with experimental results), and mathematical analysis. The verification component,
which refers to the estimation of error due to numerical implementation, may then be performed by simple methods
like comparing the results obtained by two discretizations, or by more mathematically sophisticated means, e.g. a
posteriori error estimation (see e.g. [1–3]).

The first mathematical model we consider, our “Basic Model”, is one of the simplest choices for our flat prestressed
membrane (and the other problems mentioned). It is described by the second-order linear PDE

− ∇ · (K (x)∇w(x)) = 0, x ∈ Ω̃ (1)

(K (x)∇w(x)) · n(x) = g(x), x ∈ ∂Ω (2)

w(x) = 0, x ∈ ∂ω, (3)

where Ω̃ represents the domain outside the discs and ∂ω the combined boundary of the discs. Here,w(x) is the vertical
displacement and n(x) the outward normal to Ω̃ at the point x. The positive definite matrix K (x) relates to membrane
prestressing and can be replaced by a constant if we know from the fabrication that it does not vary much. This Basic
Model will be reasonably accurate when g is assumed small enough for effects to be essentially linear. (Note that we
focus on the problem with Neumann boundary conditions on ∂Ω and Dirichlet boundary conditions on ∂ω.)
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Let us define the following two QoI, the determination of which will be the goals of our calculation. First, the
energy

E(w, S) =

∫
S
(K∇w) · ∇w dx (4)

of the solution in subdomains S ⊂ Ω not close to the discs (i.e. dist(∂S, ∂ω) > ρ > 0). Second, the forces qi acting
on the boundaries of the discs, defined by

qi (w) =

∫
∂ωi

(K∇w) · n ds. (5)

In keeping with the principles mentioned earlier, these QoI will form the basis for our evaluation of any model and its
method of discretization. For the Basic Model discretized by the standard FEM, both verification and validation are
well-established with respect to these (and other) QoI when g is in a suitable range.

Since our concern in this paper is the case when the radii of the discs are small, we can propose an even simpler
model, where σi are just taken to be 0. This limiting case yields an easier domain to work with, since the onerous task
of meshing the discs (which requires human input, and can dominate the cost of modeling) is avoided. For this model,
(3) is replaced by the limiting point constraints

w(yi ) = 0, i = 1, 2, . . . , n, (6)

where yi is the center of disc ωi . We call (1), (2), (6) the “Intuitive Model”.
Although seemingly natural and intuitively clear, the Intuitive Model is incorrect, since the point boundary

conditions (6) are inadmissible for second-order PDEs like (1) over domains in two and higher dimensions.
Mathematically, the exact solution does not exist, since the energy E(w, Ω̃ ) and L2(Ω̃ ) norm of w increase without
bound as σi → 0, becoming infinite in the limit.

And yet, a finite element discretization of the Intuitive Model can always be carried out, since (6) just reduces
to a set of point constraints wh(yi ) = 0 on the finite element solution wh . Although the energy of wh will become
infinite as h → 0, it remains finite for any h > 0, so that wh always exists and is unique. The question then arises
whether these FE approximations for the “incorrect” limiting case σi = 0 can be used to produce reasonable-looking
approximations for the QoI for the case σi > 0.

The answer is yes. Even though E(wh, Ω̃ ) and ∥wh∥L2(Ω̃) diverge as h → 0, we can, indeed, extract values for our
two QoI from wh that pass verification tests such as “converging” numerically, i.e. yielding acceptable error estimates
based on the comparison for two step sizes h and h/2 (see Section 8). This is one of the key motivations behind our
paper – the fact that certain quantities of interest may still be recovered even when the model is incorrect and an
exact solution does not exist – a situation that can occur often enough in actual engineering and scientific practice.
For example, such a case of ill-posed point constraints being used to analyze the elastostatics of the Faraday cage by
Feynman in his classic work [4] was recently pointed out in [5,6]. As another example, engineering computations in
elasticity (a natural extension of the problem considered here) often use strategies where connections between domain
components (say by rivets passing through holes, see e.g. [7]) are implemented by matching nodal displacements, a
constraint which can be just as inadmissible as a point boundary condition. A third specific example is the lug problem
in Section 17.1 of [8] (results from which are commented on in Section 8).

The crucial issue that arises then is how reliable are these approximations? We address this by investigating two
related questions. First, do the QoI corresponding to the Basic Model have well-defined limits as σi → 0? We show
in Sections 4 and 5 that even though the solution w of the Basic Model does not converge in the energy norm, there
exists u0 ∈ L2(Ω ) such that the QoI E(w, S) converges to E(u0, S) (Theorem 5.4). Moreover, the QoI qi (w) also has
a well-defined limit q0

i as σi → 0, which can be analytically computed (Theorem 5.6). However, our theorems show
that the convergence of our QoI to their asymptotic limits is only logarithmic. So the asymptotic σi = 0 values may
not be practically acceptable approximations to the QoI actually needed (where σi > 0) unless the discs are extremely
small. We demonstrate this computationally in Section 7, where holes of unequal radii are seen to cause unacceptably
large deviations in the QoI from their asymptotic limits.

The second question, investigated in Section 8, is how well values recovered from the FE approximations of the
Intuitive Model approximate our QoI. We show that the fact that successive step sizes give very close results can be a
misleading test, particularly when the “converged” computed values are used to approximate QoI for σi > 0. While
the intuitive FE approximations may converge to the limiting values E(u0, S) and q0

i , the observed convergence
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rate can be slow, and as pointed out in [8], other limits might be possible, depending on the meshes used. Hence,
a clear understanding of the asymptotic values of the QoI is needed before any conclusions can be drawn. Our
recommendation therefore is to use the Basic Model, not the Intuitive Model.

The need for the Basic Model then brings us to the second key issue we address in this paper: how to efficiently
discretize it? As mentioned earlier, modeling the discs can involve meshing costs and moreover, the use of curvilinear
elements. Also, the exact solution will contain a component in the vicinity of each disc which gets increasingly
singular as σi → 0. This may lead to poor approximation by the trial functions, unless highly non-quasiuniform
meshes are used (which may again require enhanced human input and lead to a system of FEM equations with very
high scaled conditioning number).

We therefore present a modified FEM which incorporates a priori analytic knowledge of the singular behavior
near discs into the solution procedure. In particular, these singular components are (essentially) reproduced exactly
in the approximate solution. This allows us to perform the finite element modeling on a “filled in” domain without
discs (which was the fundamental motivation behind the Intuitive Model), thus obviating the need to use curvilinear
elements or implement any special meshing. Our method is robust with respect to the size of the discs, which can
be varied very easily, as required in parameter sensitivity studies. Moreover, the functions being approximated by
finite elements are smooth, resulting in high convergence rates for our QoI. Our modified FEM can be easily extended
to supports (or holes) of arbitrary shapes (Remark 3.1) and materials with various anisotropies (Remark 3.2). The
method is not required for boundary conditions other than the Dirichlet inside/Neumann outside pairing considered
here (see Remark 2.2).

An outline of our paper is as follows. In Section 2, we reformulate our model problem into one whose asymptotic
limit remains square-integrable as the disc radii σi → 0. (This introduces an additional boundary unknown that
becomes infinite as σi → 0.) In Section 3, we introduce a linear combination of singular and smooth components
which serves as an approximate decomposition of the exact solution. The coefficients of this linear combination can
be obtained as the solution of a system of equations whose solvability and asymptotics we analyze in Section 4. In
Section 5, we derive energy norm estimates for the error between the exact solution and our linear combination as
σi → 0, and also prove an estimate establishing the effectiveness of our recovery of the QoI qi (again as σi → 0).
Section 6 contains error estimates for our modified finite element approximation of the Basic Model, which establish
asymptotic convergence rates for our QoI both in terms of σi → 0 and h → 0 (or p → ∞ in the p version). In
Section 7, we report the results of computational experiments, which demonstrate the effectiveness of the modified
FEM for a range of parameter values σi > 0 and h > 0 of practical interest. Section 8 contains the results of
computations to assess how well our QoI is recovered using the Intuitive Model. Finally, in Section 9, we summarize
our method and present our conclusions.

Let us mention that the analytic study of problems over domains with small holes (the generalization of our
disc exclusions) has a rich history. See, for instance, the works by Il’in (e.g. [9,10]), Maz’ya and collabora-
tors (e.g. [11,12]), Lanza de Cristoforis (e.g. [13,14]), Dalla Riva and collaborators (e.g. [15,16]) and others
(e.g. [17–21]). Such studies have also led to computational techniques for the Basic Model that incorporate knowledge
of the singularities and use series expansions to approximate the smooth components (see e.g. the meso-scale method
in [12] and the least-squares boundary-matching method in [6]). Resolving the smooth components by finite elements,
as we propose and analyze in depth in this paper, sets the problem in a natural, convenient and flexible engineering
framework, that allows efficient and easily verifiable recovery of QoI and the application of various estimation and
postprocessing techniques available in the context of FEM architecture.

In this regard, the idea of incorporating analytic features of the solution in the finite element solution also has
many precedents. For instance, enhancing subspaces with corner singularities was discussed early on in [22,23]. More
recent developments along these lines include the Generalized Finite Element Method [24,25], the Partition of Unity
Method [26] as well as their combination [27]. For some comments on the differences between our method and these
approaches see Remark 3.3.

Finally, we are particularly motivated by problems from plane elasticity, such as the design and analysis of lugs
and perforated connectors (see Remarks 2.3 and 2.4). Our method can be extended to such elasticity problems, as well
as to other operators including the 3D Laplacian (see Remarks 3.2 and 4.3).

2. Mathematical formulation of the basic model

Let Ω ⊂ R2 be a domain with piecewise smooth boundary ∂Ω as shown in Fig. 1. The discs ωi , i = 1, 2, . . . , n
(or “holes” as we will refer to them in the sequel) will be assumed to satisfy ωi ⊂ Ω , and ωi ∩ω j = 0, i ̸= j . Denote
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ω = ∪
n
i=1ωi , ∂ω = ∪

n
i=1∂ωi , and Ω̃ = Ω \ ω. Let g ∈ L2(∂Ω ). Taking K = 1 for simplicity, we may write (1), (2),

(3) as the Laplace equation problem,

− ∆w = 0 in Ω̃ (7)
∂w

∂n
= g on ∂Ω (8)

w = 0 on ∂ω. (9)

Define H 1
D(Ω̃ ) = {w|w ∈ H 1(Ω̃ ), w = 0 on ∂ω}. Then there is unique w ∈ H 1

D(Ω̃ ) such that

BΩ̃ (w, v) =

∫
Ω̃

∇w · ∇vdx = F(v) =

∫
∂Ω

gv ds, (10)

for all v ∈ H 1
D(Ω̃ ). The bilinear form BΩ̃ gives rise to the following energy norm,

∥w∥E,Ω̃ = (BΩ̃ (w,w))
1
2

which is equivalent to the H 1(Ω̃ ) norm for functions in H 1
D(Ω̃ ) as long as the radii σi > 0. We define the corresponding

energy space as E(Ω̃ ), where for any S ⊂ Ω̃ ,

E(S) = {w|E(w, S) = BS(w,w) = ∥w∥
2
E,S < ∞}.

Let us define

G =

∫
∂Ω

g(x) ds. (11)

Then we see by (7) that∫
∂ω

∂w

∂n
ds = −G,

which means that defining

qi =

∫
∂ωi

∂w

∂n
ds (12)

(as in (5)), we must have
n∑

i=1

qi = −G. (13)

This shows that the total force G gets distributed over the boundaries of the separate internal holes. Consequently, as
the holes become smaller (i.e. σi → 0) we can expect, in an average sense,

∂w

∂n
≈

qi

|∂ωi |
= qi (2πσi )−1 on ∂ωi .

This shows that ∂w
∂n will become unbounded at ∂ω as σi → 0. In fact, the solution cannot lie in H 1(Ω ) in the limit,

since (9) would then reduce to a point constraint, which would be inadmissible. As it turns out, we can expect the
solution to get unbounded everywhere outside ∂ω as σi → 0, as may be seen from the simple case of an annulus.

Example 2.1. Suppose Ω is the unit circle, and there is only one hole, ω, which is a circle of radius σ with center at
the origin. For simplicity, suppose g = 1 on ∂Ω . Then it may be easily verified that the solution to (7)–(9) is given by

w(r, θ) = log r − log σ (14)

where (r, θ) are polar coordinates at the origin. From this, we may observe that
∫
Ω̃ w dx = O(|log σ |), ∥w∥0,Ω̃ =

O(|log σ |), |w|1,Ω̃ = O(|log σ |
1
2 ), and ∥w∥2,Ω̃ = O(σ−1).

Remark 2.1. The case of a general Ω with multiple holes can also be expected to exhibit unboundedness in similar
norms. In this general case, the energy norm is given by

∥w∥
2
E,Ω̃ = |w|

2
1,Ω̃ =

∫
Ω̃

∇w · ∇w dx =

∫
∂Ω

gw ds.
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Since we expect this to be unbounded as σi → 0, we see that w cannot remain bounded on ∂Ω . This essentially
implies that w will have a (constant) component similar to log σ in (14) that makes it unbounded everywhere as
σi → 0.

Remark 2.2. We analyze the case of Dirichlet conditions on ∂ωi and Neumann conditions on ∂Ω precisely because of
the above singularities and unbounded behavior. If Dirichlet conditions are imposed on ∂Ω , then the problem remains
well-posed in the limit σi → 0. Also, the problem with Neumann conditions on all boundaries will have a solution
(and be well-posed) if and only if a compatibility condition is satisfied by the boundary data. Hence the special method
we develop in this paper is not needed for any of these cases.

Remark 2.3. As mentioned in the introduction, our model problem has many applications and extensions. One is the
lug problem in elasticity discussed in [8] and others, where Ω is the lug and ωi the fasteners. Instead of (7), we have
a system of equations in the displacement u = (ux , u y). Also, our QoI qi is a three-dimensional vector representing
the forces in the x and y directions and the moment over the fastener boundaries, the determination of which is of
particular engineering significance.

From (14) and Remark 2.3, we note that the unboundedness of w in the L2 norm as σ → 0 is due to the constant
log σ term (as opposed to the log r term, which remains bounded in L2). Let us therefore reformulate (7)–(9) by
essentially removing the constraint (9), which is the cause of this log σ term appearing. (This will also be necessary
for solving a linear system of equations we encounter in Section 4.) We now find a u satisfying (Fig. 2):

− ∆u = 0 in Ω̃ (15)
∂u
∂n

= g on ∂Ω (16)

u = A on ∂ω (17)∫
Ω̃

u(x) dx = 0. (18)

Here, A is an unknown real number, and this extra degree of freedom is compensated for by the additional constraint
(18), so that we once again have existence and uniqueness. In fact, the solutions u and w simply differ by a constant.
Indeed, define A∗

=
∫
Ω̃ w(x) dx. Then u = w − A∗/|Ω̃ | satisfies (15)–(18) with A = −A∗/|Ω̃ |.

Since we expect A∗ to be unbounded as σi → 0, A will be as well, i.e. the value of u will now be allowed to
blow up at the holes (instead of being constrained to 0). However, as we will see, the L2 norm of u will now remain
bounded — this is the analog of saying that if we remove the log σ term in (14), then the log r term that remains will
be L2 bounded. Note that since ∥w∥E,Ω̃ = ∥u∥E,Ω̃ , the unboundedness in the energy norm will be unaffected.

Remark 2.4. The physical interpretation of the reformulation is that the membrane is supported by discs attached to
a rigid board which (instead of being fixed at zero height) can move vertically up or down an amount A. In the lug
problem, the board would be able to move in the x and y directions and also rotate.

Remark 2.5. Since the value of A is an unknown, the solution to (15)–(18) is the pair (u, A). Note that our QoI for
this reformulation are the same as for (7)–(9), independently of A and (18).

Since we are interested in the case of small holes, let us use a parameter κ ∈ (0, 1] to formalize the way their
radii can tend to 0. We assume that ρi , i = 1, 2, . . . , n are fixed values satisfying 0 < ρi ≤ R < 1. Here, R will be
assumed to be small enough — a sufficient condition will be given in Section 4. Define

σi (κ) = κρi . (19)

The holes will now be the circular domains ωi (κ) with centers yi and radii σi (κ). Define ω(κ) = ∪
n
i=1ωi (κ) and let

Ω̃ (κ) = Ω−ω(κ). Then we denote by (u(κ), A(κ)) (respectivelyw(κ)) the solution of (15)–(18) (respectively (7)–(9))
on Ω̃ (κ).

Let us denote S = {S ⊂ Ω | dist(S,∪n
i=1yi ) > 0}. Although ∥u(κ)∥E,Ω̃ does not converge as κ → 0, in

Section 5 (see Theorem 5.4), we will show that there exists unique u0 ∈ L2(Ω ) such that ∀S ∈ S, u0 ∈ E(S) and
∥u(κ) − u0∥E,S → 0 as κ → 0. (Here, for any S, κ is assumed small enough so that S ⊂ Ω̃ (κ).)
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Fig. 2. Solution u.

3. An approximation to the solution

In this section, we construct U (κ), a linear combination of singular and smooth components, which will
approximate u(κ) in ∥ · ∥E,Ω̃ (i.e. in the H 1(Ω̃ ) seminorm). Further approximating the smooth components by the
finite element method (as indicated in Section 6) will lead to our computational solution.

We will need G ̸= 0 in our algorithm, which we assume from now on. In case G = 0 or G is small, we can instead
solve two problems, taking g1 = g + 1 and g2 = 1 in the boundary condition (8), and obtaining our solution as the
difference.

For the singular components, we will be guided by the annulus example, which indicates that u(κ) can be expected
to grow logarithmically near the holes. Hence we take these components to be

φi (x) = log|x − yi |. (20)

Note that

− ∆φi = 2πδi in Ω , (21)

where δi is the Dirac function at yi . Hence φi is harmonic on Ω − yi .
These components φi will result in stresses ∂φi/∂n on ∂Ω which satisfy∫

∂Ω

∂φi

∂n
ds = 2π. (22)

Our smooth components ψi will be defined to correct for these boundary stresses, with the aim of enforcing (16). For
this, we let ψi ∈ H 1(Ω ) satisfy

− ∆ψi = 0 in Ω (23)
∂ψi

∂n
=

2π
G

g −
∂φi

∂n
on ∂Ω . (24)

Noting that∫
∂Ω

∂ψi

∂n
ds =

∫
∂Ω

(
2π
G

g −
∂φi

∂n

)
ds

= 2π
∫
∂Ω

g
G

ds −

∫
∂Ω

∂φi

∂n
ds = 2π (1) − 2π = 0,

we see that (23)–(24) has a solution that is unique up to a constant. To specify this constant, we can impose the
additional requirement,∫

Ω

ψi (x) dx = 0. (25)
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However, specifying a different constant (via some other condition) does not change our approximation to w(κ), see
Theorem 4.4. This flexibility can come into play while trying to define U (κ), see Remark 4.4.

Unlike φi , we do not know the functions ψi explicitly, so we will approximate them by the finite element method.
Note that ψi are defined on the entire domain Ω , so such approximation can be carried out without modeling the holes.
Moreover, each ψi is a smooth function (with smoothness determined only by the regularity of the domain Ω ) since
the forcing terms in (24) are smooth and independent of κ . This is an essential feature of our approach: separating out
the singular functions φi so that the smooth ψi can be well approximated by finite elements of any order on a uniform
mesh.

We now define U (κ) ∈ H 1(Ω̃ (κ)) to be the linear combination,

U (κ) =

n∑
i=1

ci (κ)(φi + ψi ), (26)

where c(κ) = (c1(κ), c2(κ), . . . , cn(κ))T
∈ Rn is to be determined. Then clearly U (κ) is harmonic on Ω̃ (κ). Physically

speaking, ci is approximately −1/2π times the force qi acting on the boundary of the disc ωi (see Eq. (66) ahead).
With this in mind, the first condition we impose to specify c(κ) is essentially (13), i.e.

n∑
i=1

ci (κ) =
G
2π
. (27)

Then, using (24), (26) and (27),

∂U (κ)
∂n

=

n∑
i=1

ci (κ)
(

2π
G

g
)

= g on ∂Ω ,

so that U (κ) satisfies the same boundary condition (16) as u(κ).
Next, for U (κ) to be a good approximation to u(κ), we should also have it assume a common constant value along

all of the boundaries ∂ωi (κ) (in the same way that u(κ) reduces to A(κ) in Eq. (17)). We satisfy this condition only in
an average sense, by introducing a new unknown d(κ) ∈ R (corresponding to A(κ)), and imposing the n equations

1
meas(∂ωi )

∫
∂ωi

U (κ)(s) ds = d(κ), i = 1, 2, . . . , n. (28)

(Noting that κ is small, we see this does give U (κ) ≈ d(κ) on ∂ωi .)
Since ψ j is harmonic on ωi for i, j = 1, 2, . . . , n, we have the identities,

ψ j (yi ) =
1

2πσi

∫
∂ωi

ψ j (s) ds, (29)

with an analogous relation holding for φ j over ∂ωi , j ̸= i . Substituting (26) in (28) and using these identities, we get
the n equations

ci (κ) log σi (κ) +

n∑
j=1, j ̸=i

c j (κ)φ j (yi ) +

n∑
j=1

c j (κ)ψ j (yi ) = d(κ), i = 1, 2, . . . , n. (30)

Then (27), (30) is a system of n +1 linear equations in the n +1 unknowns (c(κ), d(κ)). (This balancing of constraints
and unknowns is another reason we transformed our original problem in w(κ) to one in u(κ), which had the extra
unknown A(κ).)

Remark 3.1. Our method extends easily to holes of other shapes by using Eq. (28) to recalculate the coefficients
of c j , j = 1, 2, . . . , n in Eq. (30). For an ellipse or square, for instance, only the coefficient log σi (κ) changes, but
for more general shapes where an analog of (29) does not hold, φ j (yi ), ψ j (yi ) must also be replaced by averages of
φ j , ψ j , respectively, over ∂ωi .

Remark 3.2. Observe that the singular component (20) corresponds to the fundamental solution for the problem,
i.e. the solution for the case of a concentrated load at the point yi (Eq. (21)). Our idea can therefore be applied
to other operators as well, by taking φi to be the corresponding fundamental solution. For instance, we have taken
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K = 1 in Eq. (1) for simplicity, but various anisotropies with general K could be treated, using the corresponding
fundamental solutions (available in references like [28]). Also, the method can readily be extended to elasticity where
(in 2D) we will have three singular components for each i , corresponding to concentrated loads in the x and y
directions, and to a concentrated moment.

Remark 3.3. The idea of using analytic functions in conjunction with numerical treatment is very natural. As
mentioned in the introduction, it was already used in works like [22] in the context of FE approximation of corner
singularities. Such enrichments have also been applied locally using partition of unity functions, as in the GFEM and
EXFEM (see e.g. [25,27]). Logarithmic singularities have been combined with asymptotic expansions in e.g. [12]
and [6].

Let us comment that while partition of unity and GFEM methods use a localized approach to treat various features
of the solution, our approach, being global, is both theoretically and implementationally different. In particular, no
singularities or handbook solutions need to be locally inserted via specialized basis functions (as, for example, has
been done to treat voids by the GFEM in [29]). The advantage of our approach is that it is provably robust with respect
to the hole radii, as we establish in this paper. We remark that when our approach is used to treat the holes, partition of
unity/enrichment methods could also be incorporated into the approximation procedure to treat other solution features
of the types discussed e.g. in [26].

4. The linear equations

In this section, we will show that the linear system (27), (30) has a unique solution. Moreover, we will investigate
its solution as κ → 0. For vectors a, we will use the usual norm ∥a∥ = max1≤i≤n|ai |, and for n × n matrices A, the
norm ∥A∥ = max1≤i≤n

∑n
j=1|Ai j |.

Define e to be the vector (1, 1, . . . , 1)T
∈ Rn . Then we may write Eqs. (30) as

Mc = de (31)

where M = M(κ) is an n × n matrix that has the form

M(κ) = D(κ) + B.

Here, D = diag{D11, D22, . . . , Dnn} is the diagonal matrix with entries

Di i = Di i (κ) = log σi (κ) = log ρi + log κ

and B = {Bi j } is the matrix given by

Bi j = ψ j (yi ) + φ j (yi ), i ̸= j

= ψi (yi ), i = j. (32)

Note that B is independent of κ , and by (20)–(25), depends entirely on g, the domain, and the holes. Hence, its norm
can be bounded independently of κ . Moreover, since σi (κ) ≤ R < 1 for any κ ∈ (0, 1], the diagonal entries of D are
strictly negative, so that D is invertible.

Define the vector

g = g(κ) = D−1(κ) e.

Then we see that

gi (κ) = D−1
i i (κ) = (log σi (κ))−1

= (log ρi + log κ)−1, (33)

so that

∥D−1(κ)∥ = ∥g(κ)∥ ≤ min{|log R|
−1, |log κ|−1

}. (34)

The matrix M will be diagonally dominant (and hence invertible) provided the holes are small enough. More
precisely, the condition (35) in the following lemma is sufficient.
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Lemma 4.1. Let R be small enough so that

α =
∥B∥

|log R|
<

1
2

(35)

where B is as in (32). Then for all κ ∈ (0, 1], the matrix M(κ) defined in (31) is invertible, and its inverse satisfies the
uniform estimate

∥M−1(κ)∥ ≤ 2 min{|log R|
−1, |log κ|−1

}. (36)

Moreover,

M−1(κ) = D−1(κ)(I + Z (κ)) (37)

where for all κ ∈ (0, 1],

∥Z (κ)∥ ≤ 2αmin{1, |log R| |log κ|−1
}. (38)

Proof. Let us write

M = D + B = (I + B D−1)D.

Then using (34) and (35), we have

∥B D−1
∥ ≤ ∥B∥ ∥D−1

∥ ≤ αmin{1, |log R| |log κ|−1
} <

1
2
.

Hence, I + B D−1 is invertible, with its inverse given by the convergent infinite series

(I + B D−1)−1
= I − B D−1

+ (B D−1)2
− (B D−1)3

· · ·

= I + Z . (39)

From this, it easily follows that

∥(I + B D−1)−1
∥ ≤

1
1 − ∥B D−1∥

< 2,

∥Z∥ ≤
∥B D−1

∥

1 − ∥B D−1∥
≤ 2αmin{1, |log R| |log κ|−1

}, (40)

proving (38). We also see

∥M−1
∥ = ∥D−1(I + B D−1)−1

∥ ≤ 2∥D−1
∥.

Estimate (36) follows from (34). □

Let us define

K = |eT D−1e|.

Then we have the following lemma.

Lemma 4.2. Let R satisfy (35). Then there exists a constant C independent of κ such that

K ≥ Cn min{|log ρi |
−1, |log κ|−1

}. (41)

|eT M−1e| ≥ K (1 − 2α) > 0. (42)

Proof. We see that since the terms D−1
i i are all negative,

K =

⏐⏐⏐⏐⏐
n∑
i

D−1
i i

⏐⏐⏐⏐⏐ =

n∑
i

|(log σi )−1
| ≥ n min

i
|(log σi )−1

|,

from which (41) follows. Moreover, since D−1 is symmetric,

|eT D−1 Ze| = |(D−1e)T Ze| ≤ K∥Z∥ ≤ K (2α), (43)
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using (38). By (37),

|eT M−1e| ≥ |eT D−1e| − |eT D−1 Ze|.

The estimate (42) follows from (43). □

Lemma 4.3. Let R satisfy (35). Then

∥(log κ) M−1(κ) − I∥ = O(|log κ|−1)

as κ → 0.

Proof. Factoring (log κ)−1 from (33), we note that

∥(log κ) D−1(κ) − I∥ = O(|log κ|−1)

as κ → 0. Moreover, using (40), we see that ∥Z (κ)∥ = O(|log κ|−1) as κ → 0. The lemma follows from (37). □

Theorem 4.4. Let R satisfy (35). Then for any κ ∈ (0, 1], the system (27), (30) has a unique solution (c(κ), d(κ))
satisfying

∥c(κ)∥ ≤ C |G| (44)

with C a constant independent of κ . Moreover, as κ → 0,

∥c(κ) − c(0)∥ = O(|log κ|−1) (45)

with the limiting solution c(0) given by

ci (0) =
G

2πn
. (46)

Finally, if the functions ψi in (26) are replaced by ψi + ki where ki are arbitrary constants, then the unique solution
of the updated system (27), (30) is (c(κ), d(κ) −

∑n
i=1ki ci (κ)).

Proof. Since M is invertible, we can solve Eq. (31) for c to obtain

c = d M−1e. (47)

Substituting in (27),

eT c = deT M−1e =
G
2π
. (48)

Since by (42), eT M−1e ̸= 0, we can solve (48) (and substitute in (47)) to get the unique solution

d =
1

eT M−1e
G
2π

(49)

c =
M−1e

eT M−1e
G
2π
. (50)

Next, noting that ∥M−1e∥ = ∥M−1
∥, we see, using (36) and (42) that

∥c∥ = (2π )−1 ∥M−1
∥

|eT M−1e|
|G|

≤ C
|log κ|−1

K
|G|,

so that (44) follows by (41). Eq. (46) follows by taking the limit in (50) and using Lemma 4.3.
Finally, replacing function ψi in (26) by ψi + ki has the effect of changing Eq. (31) to

(M + [k1e k2e . . . kne])c = de,
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which is equivalent to

Mc =

(
d −

n∑
i=1

ki ci

)
e = d̃e.

Hence the new solution is (c, d̃). □

Remark 4.1. Using (49) and Lemma 4.3, we see that

d
log κ

→
G

2πn
.

This shows that |d| is not bounded as κ → 0, but grows as O(|log κ|).

Remark 4.2. We have analyzed the case (19), where the radii of the holes are all proportional to κ . But if we assume
they shrink at different rates, the limiting solution may be different. For instance, under the condition

σi (κ) = κγiρi ,

it is easy to see that Lemma 4.3 holds with I replaced by J = diag{γ1, γ2, . . . γn}. In this case, the limiting solution
c(0) will be given by

ci (0) =
γi

γ

(
G
2π

)
(51)

where γ =
∑
γi .

Remark 4.3. We have taken φi to be logarithmic functions, which come from solving Laplace’s equation in two
dimensions. As mentioned in Remark 3.2, we can extend our method to other operators by taking φi to be the
corresponding fundamental solutions. The results above will again hold, since these φi will again be unbounded
at r = 0. The key property of diagonal dominance of the matrix M when the holes are small enough remains the
same, though the exact form of Lemma 4.3 and the limiting solution ci (0) may change.

As an example, consider the case of Laplace’s equation in three dimensions, where the holes are now spheres of
radii κρi and the singular components originating at sphere centers yi are

φi (x) =
1

|x − yi |
.

Then with J = diag{ρ1, ρ2, . . . , ρn}, and R small enough, we may show (compare with Lemma 4.3)

∥κ−1 M−1(κ) − I∥ = O(κ)

as κ → 0. This leads to the limiting solution

ci (0) =
ρi

ρ

(
G
2π

)
where ρ =

∑
ρi . The 2D elasticity problem will also in general lead to coefficients that are different for different i .

Remark 4.4. The condition (35) imposed on R in Theorem 4.4 only guarantees solvability when the holes are small
enough. Indeed, when (35) is not satisfied, one may encounter isolated values of κ for which the matrix M(κ) is not
invertible. Suppose rank M = n − 1, then some column Ci of M would be a linear combination of the other columns
C j , j ̸= i .

Recall that Eqs. (23)–(24) only define ψi up to an arbitrary constant. So in this situation, we can replace ψi by
ψi + 1 in the definition of U (κ). This has the effect of adding the vector e to column Ci of M . Then, except for the
extremely rare coincidence of e also happening to be a linear combination of the columns C j , j ̸= i , this updated M
will now be nonsingular. (If the singular M had rank deficiency k > 1, then we could redefine k of the ψi ’s this way.)

As proved in Theorem 4.4, such replacement does not change the solved coefficients c.
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5. Approximation theorems

In this section, we prove various approximation results in terms of the parameter κ . Our starting point is the function
U (κ), which, as we shall see, approximates u(κ) in the H 1 seminorm. We will also show that the function

W (κ) = U (κ) − d(κ) (52)

approximates w(κ) in the H 1 norm. Using Theorem 4.4, we can easily verify that this W will be independent of the
constants used in the definitions of the functions ψi .

We first prove a preliminary lemma, establishing a Poincaré inequality uniform in κ on the domains Ω̃ (κ).

Lemma 5.1. There exists a constant C independent of κ such that for all u ∈ H 1
D(Ω̃ (κ)), κ ∈ (0, 1],

∥u∥0,Ω̃ ≤ C |log κ|
1
2 |u|1,Ω̃ .

Proof. It is sufficient to prove the lemma for the case that Ω̃ (κ) is an annulus of inner radius κ and unit outer radius.
The general case can then be established from component-wise inequalities.

Let (r, θ) denote the polar coordinates with origin at the center of the annulus. Then, since u(κ, θ) = 0,

u(r, θ) =

∫ r

κ

∂u
∂t

(t, θ) dt,

so that by the Schwarz inequality,

|u|
2

≤

⏐⏐⏐⏐∫ r

κ

dt
t

⏐⏐⏐⏐
⏐⏐⏐⏐⏐
∫ r

κ

(
∂u
∂t

)2

t dt

⏐⏐⏐⏐⏐ ≤ C |log κ|
∫ 1

κ

(
∂u
∂t

)2

t dt.

From this,∫ 1

κ

|u|
2r dr ≤ C

(∫ 1

κ

r dr
)

|log κ|
∫ 1

κ

(
∂u
∂t

)2

t dt.

Integrating with respect to θ gives the lemma. □

Turning to the approximation of w(κ) by W (κ), we note that W satisfies (7) and (8), two of the equations that
define w. Although W does not vanish on ∂ω like w does, it is easy to see that it is O(κ) there. Indeed, for
x ∈ ∂ωi (κ), i = 1, 2, . . . , n, we have, using (26) and (30),

W (κ)(x) =

n∑
j=1, j ̸=i

c j (κ)(φ j (x) − φ j (yi )) +

n∑
j=1

c j (κ)(ψ j (x) − ψ j (yi )).

Since φ j , j = 1, 2, . . . , n, j ̸= i and ψ j , j = 1, 2, . . . , n are all analytic in a neighborhood of ωi (κ), we can express
each of these functions by a Taylor expansion around yi to obtain,

W (κ)(x) =

m∑
k=1

(κρi )k(Ak
i cos kθi + Bk

i sin kθi ) + (κρi )m+1Rm
i (x), (53)

where x = (κρi cos θi , κρi sin θi ) ∈ ∂ωi . (We use (ri , θi ) to denote the polar coordinates centered at yi .) The
coefficients Ak

i (κ), Bk
i (κ) will depend on c(κ) and g; we see using (44) that these coefficients will be uniformly

bounded in κ , as will the remainder Rm
i (κ)(x) and its derivatives (which will only be with respect to θi , not ri ). For

our analysis here, we will set m = 2.
Defining the correction term

zi = −

2∑
k=1

(
κρi

ri

)k

(κρi )k(Ak
i cos kθi + Bk

i sin kθi ) − (κρi )3R2
i (x), (54)

we see that

W + zi = 0 on ∂ωi . (55)
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Moreover, zi satisfies the bounds

∥zi∥1,Ω̃ ≤ Cκ, ∥zi∥1,S ≤ Cκ2 (56)

for any S ∈ S (κ small enough).
Since ∂zi/∂n ̸= 0 on ∂Ω , let us next make a modification to these terms. To this end, let N 1

i ,N 2
i be fixed

neighborhoods of yi that satisfy N 1
i ⊂ N 2

i ⊂ Ω , with the distance of N 2
i to any other y j being positive. Assume κ is

small enough so that ωi (κ) ⊂ N 1
i , ω j (κ) ⊂ Ω̃ \ N 2

i for j ̸= i . Let τi be a C∞ (or suitably smooth) cut-off function
which is 1 inside N 1

i and 0 outside N 2
i . Defining

z̃i = ziτi , (57)

we see that z̃i has the same trace as zi on ∂ωi and hence satisfies (55). Moreover, ∂ z̃i/∂n = 0 on ∂Ω .
Let us now define

Z =

n∑
i=1

z̃i .

Then by the above construction, we have

∥Z∥1,Ω̃ ≤ Cκ, ∥Z∥1,S ≤ Cκ2, (58)
∂(W + Z )

∂n
= g on ∂Ω .

W + Z = 0 on ∂ω.

However, W + Z is not harmonic on Ω̃ , so we make a further correction to it. We solve the following problem: Find
Y ∈ H 1

D(Ω̃ ) satisfying

− ∆Y = ∆Z on Ω̃
∂Y
∂n

= 0 on ∂Ω . (59)

Clearly, the above problem has a unique solution for any κ > 0. We have the following estimate.

Lemma 5.2. There exists a constant C independent of κ ∈ (0, 1] such that

∥Y∥1,Ω̃ ≤ C |log κ|
1
2 κ2.

Proof. Using (54), (57), we may write z̃i as

z̃i = −

(
2∑

k=1

(
κρi

ri

)k

(κρi )k(Ak
i cos kθi + Bk

i sin kθi )

)
τi −

(
(κρi )3R2

i (x)
)
τi

= z̃1
i + z̃2

i .

Then z̃1
i is harmonic everywhere on Ω̃ except for N 2

i \ N 1
i , so that

∥∆z̃1
i ∥0,Ω̃ = ∥∆z̃1

i ∥0,N 2
i \N 1

i
≤ Cκ2 (60)

(where we have used the fact that N 2
i \N 1

i is independent of κ). Also, since R2
i (x) is independent of ri , we can verify

that ∂2(z̃2
i )

∂r2
i


0,Ω̃

≤ Cκ3,

 1
ri

∂(z̃2
i )

∂ri


0,Ω̃

≤ Cκ3,

 1
r2

i

∂2(z̃2
i )

∂θ2
i


0,Ω̃

≤ Cκ2,

so that by the polar form of the Laplacian, z̃2
i will also satisfy (60). Hence,

∥∆Z∥0,Ω̃ ≤ Cκ2.

We can now bound |Y |1,Ω̃ by ∥∆Z∥0,Ω̃ and use the Poincaré inequality (Lemma 5.1) to get the lemma. □
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We therefore obtain the following theorem.

Theorem 5.3. Let w be the solution of (7)– (9), and W be defined by (52). Then there exists a constant C independent
of κ ∈ (0, 1] such that

∥w − W∥1,Ω̃ ≤ Cκ. (61)

Moreover, for any S ∈ S, and with κ small enough,

∥w − W∥1,S ≤ C |log κ|
1
2 κ2. (62)

Proof. With Y, Z defined as above, we see that

− ∆(W + Z + Y ) = 0 on Ω̃ ,
∂(W + Z + Y )

∂n
= g on ∂Ω .

Also, W + Z + Y ∈ H 1
D(Ω̃ ), so this sum satisfies (10), the problem that w also satisfies. By uniqueness, we therefore

have

w = W + Z + Y.

The estimates then follow using (58) and Lemma 5.2. □

Clearly, we will also have the energy norm (seminorm) estimates

∥u − U∥E,Ω̃ = ∥w − W∥E,Ω̃ ≤ Cκ, (63)

∥u − U∥E,S = ∥w − W∥E,S ≤ Cκ2. (64)

Remark 5.1. Suppose we knew the coefficients Ak
i , Bk

i , k = 1, 2, . . . ,m in (53). Then we could obtain a higher order
approximation W m to w as follows. Define

sm
i = −

m∑
k=1

(
κρi

ri

)k

(κρi )k(Ak
i cos kθi + Bk

i sin kθi ),

W m
= W +

n∑
i=1

sm
i τi ,

where τi is a suitable cut-off function like the one in (57). Then the steps leading to Theorem 5.3 easily show that

∥w − W m
∥1,Ω̃ ≤ Cκm+1,

∥w − W m
∥1,S ≤ C |log κ|

1
2 κm+2.

This can be the basis for designing a higher-order extension of our method which depends on recovering
approximations to Ak

i , Bk
i .

Let us now prove a result for the asymptotic limit to the solution u(κ) as κ → 0. As explained in Section 2, the
limit of w(κ) will not exist as an L2(Ω ) function, but the limit of u(κ) will. Although the energy norm of this limit u0
will not be finite, both w(κ) and u(κ) will converge to u0 in ∥ · ∥E,S (i.e. the H 1(S) seminorm) for any fixed S ∈ S.

Theorem 5.4. There exists a unique u0 ∈ L2(Ω ) such that ∀S ∈ S, u0 ∈ E(S) and

∥w(κ) − u0∥E,S = ∥u(κ) − u0∥E,S ≤ C |log κ|−1

with C a constant independent of κ , but dependent on S.

Proof. Noting (26) and the limiting formula (46), we define

u0 = U (0) =

n∑
i=1

ci (0)(φi + ψi ) =

n∑
i=1

(
G

2πn

)
(φi + ψi ).
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Although φi is undefined at yi , it belongs to L2(Ω ), so that u0 ∈ L2(Ω ). Also, since W (κ) and U (κ) differ only by a
constant,

∥w(κ) − u0∥E,S = ∥u(κ) − u0∥E,S ≤ ∥w(κ) − W (κ)∥E,S + ∥U (κ) − U (0)∥E,S.

The first term above is bounded by Cκ2 by (64). For the second term, we note that

∥U (κ) − U (0)∥E,S =


n∑

i=1

(ci (κ) − ci (0))(φi + ψi )


E,S

.

Since φi , ψi are analytic and bounded (independently of κ) in any norm on S, the theorem follows by (45). □

Let us now turn to the determination of the forces qi defined in (12). We will approximate them by the quantities

Qi =

∫
∂ωi

∂U
∂n

ds. (65)

Since all the terms in (26) are harmonic over ωi except for φi , this reduces to

Qi = ci

∫
∂ωi

∂φi

∂n
ds.

Noting that

∂φi

∂n
= −

1
σi

on ∂ωi ,

we have the following identity.

Qi = −2πci . (66)

Hence, the coefficients ci are simply scaled approximations to the forces qi . We obtain the following estimate.

Theorem 5.5. Let qi , Qi be defined by (12), (65) respectively. Then there exists a constant C, independent of
κ ∈ (0, 1], such that

|qi (κ) − Qi (κ)| ≤ Cκ2.

Proof. Let A ⊂ Ω̃ be an annulus with center yi , of thickness O(1) and distance O(1) away from ∂ω. Suppose ∂A is
any concentric circle in this annulus. Since u,U are both harmonic on Ω̃ , we have

qi − Qi =

∫
∂ωi

∂(u − U )
∂n

ds

= −

∫
∂A

∂(u − U )
∂n

ds.

Integrating over all such circles ∂A through the thickness of A, we see that

|qi − Qi | =
1

meas(A)

⏐⏐⏐⏐∫
A

∂(u − U )
∂n

dx
⏐⏐⏐⏐

≤
1

(meas(A))
1
2
|u − U |1,A

where we have used Schwarz’s inequality. Since A is bounded away from the holes, the theorem follows
from (64). □

From the above and Theorem 4.4, we see that

qi (0) = Qi (0) = −2πci (0) = −
G
n
. (67)

Denoting qi (0) by q0
i , and using (67), (45), we have the following analog to Theorem 5.4, for our other QoI, the forces.
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Theorem 5.6. For each i = 1, 2, . . . , n, there exists a unique q0
i defined by (67) such that

|qi (κ) − q0
i | ≤ C |log κ|−1 (68)

with C a constant independent of κ .

Remark 5.2. The slow O(|log k|
−1) convergence in Theorems 5.4 and 5.6 has to be taken into consideration when the

asymptotic limit is sometimes used in engineering. As shown by Theorems 5.3 and 5.5, we get much higher accuracy
when we use the solution W (κ) or coefficients ci (κ). In particular, (67) shows the QoI qi tend to limits that are the
same for all i , but this convergence is only logarithmic. For κ > 0 of practical interest, the approximations given by
Qi (κ) in (66) can give dramatically different (and much more accurate) results. See the example with two unequal
holes in Section 7.

6. Modified finite element approximation

Instead of directly approximating the entire solution w, our modified FEM consists of approximating only the
components ψi over the domain Ω . Let Vh ⊂ Ω be a FE subspace, and define ψi,h ∈ Vh by

BΩ (ψi,h, v) =

∫
∂Ω

(
2π
G

g −
∂φi

∂n

)
v ds ∀v ∈ Vh, (69)∫

Ω

ψi,h(x) dx = 0. (70)

Here, (70) may be replaced by a more convenient condition to fix the constant in ψi,h , e.g. by using a point constraint
ψi,h(x0) = 0, as is commonly done in the FEM for pure Neumann conditions (and as we do in Section 7). Note
that (69)–(70) is independent of κ and does not involve meshing the holes. Hence, the same FE matrices can be
(inexpensively) used to solve each of these n problems, for each value of κ that might be of interest.

The usual FE theory shows that ψi,h will be the best approximation in Vh to ψi in the energy norm. For Vh given by
continuous piecewise polynomials of degree p ≥ 1 on a suitably regular mesh (of triangles or rectangles) with mesh
size h, we obtain the standard estimate,

∥ψi − ψi,h∥1,Ω ≤ Chmin(p,k−1)
∥ψi∥k,Ω . (71)

As mentioned earlier, the function φi , which appears as data in (69), will be smooth except in the vicinity of yi .
Assuming g and Ω are smooth enough to give ψi ∈ H k(Ω ) with k ≥ p + 1, (71) becomes

∥ψi − ψi,h∥1,Ω ≤ Ch p. (72)

Under suitable regularity assumptions on the data, boundary of the domain and meshes (which we assume in all the
results below), one also obtains [30]:

∥ψi − ψi,h∥∞,Ω ≤ C |log h|
sh p+1, (73)

where s = 1 for p = 1 and is 0 otherwise.

Remark 6.1. Since ψi is smooth, the p version [31] will give particularly high convergence rates. For instance,
instead of (72), we will have

∥ψi − ψi,p∥1,Ω ≤ Cp−(k−1),

i.e. the order of convergence is only bounded by the smoothness of ψi (which may be limited e.g. due to corners in
the domain). For ψi of unlimited smoothness, the rate will be exponential.

We now define (ch(κ), dh(κ)) by the analogs of (27), (30) used to define (c(κ), d(κ)):
n∑

i=1

ci,h(κ) =
G
2π
. (74)

ci,h(κ) log σi (κ) +

n∑
j=1, j ̸=i

c j,h(κ)φ j (yi ) +

n∑
j=1

c j,h(κ)ψ j,h(yi ) = dh(κ), i = 1, 2, . . . , n. (75)
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Then (32) defines an approximation Bh to matrix B. The L∞ estimate (73) shows that

∥B − Bh∥ ≤ C |log h|
sh p. (76)

Since the exact functions φi are retained in the FE computation, the matrix D remains unchanged.
Let Bh satisfy (35), i.e.

αh =
∥Bh∥

|log R|
<

1
2
. (77)

(By (76), this will certainly hold for h small enough.) Then the analogs of Lemmas 4.1–4.3 and Theorem 4.4 all hold
(with Mh = D + Bh and Zh defined analogously to Z ). We obtain the following result.

Theorem 6.1. Suppose h, R are such that condition (77) holds. Then Eqs. (74), (75) have a unique solution for any
κ ∈ (0, 1]. Moreover, there exists a constant C independent of κ, h such that

∥c(κ) − ch(κ)∥ ≤ C |log κ|−1
|log h|

sh p, (78)

|d(κ) − dh(κ)| ≤ C |log h|
sh p. (79)

Proof. Using expansion (39) for Z , Zh we see that

Z − Zh = −(B − Bh)D−1(I − (B − Bh)D−1
+ ((B − Bh)D−1)2

− · · · ),

from which, analogously to (40),

∥Z − Zh∥ ≤ C |log h|
sh p min{1, |log R||log κ|−1

}.

Hence, for κ small enough,

∥M−1
− M−1

h ∥ = ∥D−1(Z − Zh)∥ ≤ C |log κ|−2
|log h|

sh p.

Using (50), we have

c − ch =

(
M−1e

eT M−1e
−

M−1
h e

eT M−1
h e

)
G
2π
.

Estimate (78) is easily established from this. Also, (79) can be established from the relation

d − dh =

(
1

eT M−1e
−

1

eT M−1
h e

)
G
2π
. □

Remark 6.2. The extra |log κ|−1 term in (78) is consistent with the fact that for fixed h, if κ → 0, then both c(κ) and
ch(κ) converge to the same limit c(0) at rate O(|log κ|−1), as in (45).

Let us now define Uh(κ),Wh(κ) by

Uh(κ) =

n∑
i=1

ci,h(κ)(φi + ψi,h), Wh(κ) = Uh(κ) − dh(κ). (80)

Then, for any κ ∈ (0, 1],

W (κ) − Wh(κ) =

n∑
i=1

(ci − ci,h)(κ)(φi + ψi ) +

n∑
i=1

ci,h(κ)(ψi − ψi,h) − (d(κ) − dh(κ)).

Using (72) and Theorem 6.1, this gives

∥W (κ) − Wh(κ)∥1,Ω̃ ≤ C |log h|
sh p, (81)

with C a constant independent of κ . Combining this with the estimates for w(κ) − W (κ), we have the following
theorem.
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Theorem 6.2. There exists a constant C independent of κ ∈ (0, 1] and h such that

∥w(κ) − Wh(κ)∥1,Ω̃ ≤ C(κ + |log h|
sh p). (82)

Moreover, for any S ∈ S, and with κ small enough,

∥w(κ) − Wh(κ)∥1,S ≤ C(|log κ|
1
2 κ2

+ |log h|
sh p). (83)

Corollary 6.2.1. For any S ∈ S, the energy can be approximated by E(Wh(κ), S), where

|E(w(κ), S) − E(Wh(κ), S)| ≤ C(|log κ|κ4
+ |log h|

2sh2p).

Finally, we also can use the coefficients ci,h to define approximations to our other QoI, the forces qi , by

Qi,h = −2πci,h . (84)

Then Theorem 5.5 together with (78) gives the following result.

Theorem 6.3. There exists a constant C, independent of κ ∈ (0, 1] and h such that

|qi (κ) − Qi,h(κ)| ≤ C(κ2
+ |log κ|−1

|log h|
sh p).

Remark 6.3. Note that we could also define other approximations to qi , for instance,

Q̃i,h =

∫
∂ωi

∂Uh

∂n
ds, (85)

or, for that matter, the integral over any other contour around ωi contained in Ω which does not include or intersect
the other holes. For U , all these definitions give exactly the same value, since U is harmonic. For Uh , which is only
approximately harmonic, these do not have to be equal; however, we verify in the next section that the difference using
(84) and (85) is negligible.

7. Computational results for modified FEM

In this section, we report the results of some computational experiments performed with our modified FEM.
Although our estimates are asymptotic in nature, problems of practical interest will often have holes with only
moderately small radii (relative to the dimension of the domain). It is therefore particularly relevant to obtain insight
on the range of practical parameters for which our method will be accurate.

We take g = 1 and consider the case of two holes on the square domain Ω = (−1, 1)2. Initially, we assume the
holes are of equal radius, σ1(κ) = σ2(κ) = κ < 1

2 , with centers located at y1 = (0, 0) and y2 = ( 1
2 , 0).

The locations of these centers (but not the radii) determine the two logarithmic singularities φ1 and φ2 which
we incorporate in our calculations. We then use a uniform rectangular mesh of mesh size h on the entire domain
Ω (without the holes) to compute finite element approximations to the unknown functions ψ1 and ψ2. (Instead of
condition (25), we set ψi (−1,−1) = 0.) We use both bilinear (p = 1) and biquadratic (p = 2) elements. The radii
only appear in the calculations while solving the linear system (74), (75), leading to our approximate solution Wh

given by (80).
Since the exact solution w for this problem is unknown, we compare our results with a full-blown FE solution to

(7)–(9), posed over the domain Ω̃ (this time with modeling of the holes included). We use the Matlab PDE Toolbox
code, which employs automatic meshing with linear triangular elements. We set the refinement successfully higher
until our results do not change significantly, indicating a level of accuracy high enough to make the comparison.

Define Sκ to be the region Ω with squares of side 2κ and centers y1, y2 removed, and denote S = S1/8(=
[−1, 1]2

\([− 1
8 ,

1
8 ]2

∪[ 3
8 ,

5
8 ]×[− 1

8 ,
1
8 ])) (Fig. 3). We first fix κ = 1/32 and calculate the relative error for ∥w−Wh∥E,S

with decreasing h (where w is our PDE Toolbox solution described above) using bilinear (p = 1) elements for Wh .
Looking at the ratio of errors with successive mesh sizes h in Table 1, we observe the decrease is close to O(h).

Our interpretation is that the error in κ is much smaller than the error in h for this choice of parameters, and we are
already observing the asymptotic FE rate predicted by the last term in (83).
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Fig. 3. S and Sκ for κ = 1/16.

Table 1
Relative error for ∥w − Wh∥E,S with κ = 1/32, p = 1.

h ∥w−Wh∥E,S
∥w∥E,S

(%) Ratio

1/16 6.01
1/32 3.08 1.95
1/64 1.68 1.83

Table 2
Relative error for ∥W − Wh∥E,S with κ = 1/32, p = 2.

h ∥W−Wh∥E,S
∥W∥E,S

(%) Ratio

1/8 0.0512
1/16 0.0129 3.97
1/32 0.0032 4.03
1/64 0.0008 4.00

Table 3
Relative error for ∥w − Wh∥E,S with different κ , p = 2, h = 1/128.

κ
∥w−Wh∥E,S

∥w∥E,S
(%) Ratio

1/8 8.49
1/16 2.21 3.84
1/32 0.59 3.74

For biquadratic elements, it is difficult to get the error term involving κ in (83) small enough to make the error due
to h dominate. So we instead investigate the convergence (81) (over S instead of Ω̃ ) of the approximations Wh(κ) to
W (κ) where κ is kept fixed at 1/32. Since we do not have an exact W (κ), we use W = W1/256(κ) (i.e. h taken very
small) in Table 2.

The numbers in Table 2 show we are in the asymptotic O(h p) range (p = 2) for the finite element approximation,
which is expected from (81). (We remark that a comparison between W1/256 and Wh for bilinears shows results very
similar to those in Table 1.)

Let us now try to isolate the dependence on κ . For Tables 3 and 4, we choose our mesh size h so that decreasing it
further does not significantly change Wh for the κ in the table. Since the convergence is much faster with biquadratics,
we only use those.

We see from Table 3 that the errors decrease at almost an O(κ2) rate, suggesting we are already in the asymptotic
range of the estimate (83) as far as κ goes. (Here, the O(h2) FE error is small enough to be negligible.)

Theorem 6.2 also suggests that if we measure the error over all of Ω̃ rather than just a fixed domain S, then the
convergence will be only O(κ). To investigate this effect, for each κ above, we compute ∥w − Wh∥E,Sκ (with h small
enough). Note that Sκ contains the smallest square holes that can be circumscribed around the circular holes. Since
our mesh is rectangular, this domain, which we expect to behave similarly to Ω̃ , is easier to work with.
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Table 4
Relative error for ∥w − Wh∥E,Sκ with different κ , p = 2, h = 1/128.

κ
∥w−Wh∥E,Sκ

∥w∥E,Sκ
(%) Ratio

1/8 8.49
1/16 4.00 2.12
1/32 1.92 2.08

Table 5
Difference in computed forces, first and second holes, p = 2,
h = 1/512.

κ Q1,h |Q1,h − Q̃1,h | Q2,h |Q2,h − Q̃2,h |

1/8 −4.3154 3.0999e−07 −3.6845 1.0125e−07
1/16 −4.2158 1.9599e−08 −3.7841 4.2399e−08
1/32 −4.1640 1.3001e−09 −3.8359 3.5001e−09
1/64 −4.1322 1.0101e−10 −3.8677 7.8201e−10

Table 6
Relative error in computed forces, first and second hole, p = 2, h =

1/512.

κ
|q1−Q1,h |

|q1|
(%) Ratio |q2−Q2,h |

|q2|
(%) Ratio

1/8 0.67 0.79
1/16 0.15 4.47 0.11 7.18
1/32 0.04 3.75 0.03 3.67

Table 7
Relative error in computed forces, first and second hole (unequal), p = 2, h = 1/512.

κ Q1,h
|q1−Q1,h |

|q1|
(%) Ratio Q2,h

|q2−Q2,h |

|q2|
(%) Ratio

1/4 −5.9487 2.03 −2.0513 5.19
1/8 −5.4671 0.52 3.90 −2.5329 1.01 5.14
1/16 −5.1764 0.11 4.73 −2.8236 0.21 4.81
1/32 −4.9818 0.02 5.50 −3.0182 0.05 4.20

Table 4 shows that the order of convergence indeed decreases to O(κ) when we measure the error up to the holes.
This is consistent with the estimate (82).

Next, we report some results on the computation of the forces on the hole boundaries. Once again, we use
biquadratic elements with sufficiently small mesh size (h = 1/512) to try and isolate the effects due to κ .

First, we demonstrate in Table 5 that the values Qi,h obtained using (84) closely match the values Q̃i,h from (85)
(see Remark 6.3).

From Table 5, we may also observe that Q1,h, Q2,h both approach their common limiting value of q0
i = −4 at a

rate of O(|log κ|−1) as κ → 0. This is consistent with Remark 6.2. (Note that since g = 1, the total force G over the
boundary of the square is 8, and in the limit, this gets equally distributed over the holes, as per Eq. (67).)

Next, Table 6 shows the error between the “exact” force qi calculated using the PDE Toolbox solution, and our
computed approximations Qi,h (with h = 1/512).

We see that the ratios vary, but their average, 4.57, is consistent with quadratic convergence in κ .
Let us also consider a case of unequal holes, where the first hole’s radius is four times the second’s. The centers

are now at y1 = (0, 0) and y2 = (3/4, 0), with σ1 = κ, σ2 = κ/4. As Table 7 shows, the forces are now much more
unequally distributed, as can be expected from physical intuition (with the larger support having a greater force). Note
that both forces are still converging to their common limiting value q0

i = −4, but only logarithmically. This indicates
that the asymptotic limit of −4 may not be a valid approximation in practical situations (as pointed out in Remark 5.2).
The relative error using the value of q0

2 = −4 for the force on the second hole would be about 33% for κ = 1/32 and
95% for κ = 1/4 .
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Fig. 4. Domain with five holes.

Table 8
Relative error for ∥w − Wh∥E,S with κ = 1/32, p = 2 (five holes).

h ∥w−Wh∥E,S
∥w∥E,S

(%) Ratio

1/16 6.55
1/32 3.34 2.13
1/64 1.82 2.16

Table 9
Relative error for ∥w− Wh∥E,S with different κ , p = 2, h = 1/128 (five
holes).

κ
∥w−Wh∥E,S

∥w∥E,S
(%) Ratio

1/8 12.46
1/16 3.32 3.75
1/32 0.91 3.65

Table 7 also shows that the errors are comparable to the case of equal holes. Moreover, the values of κ used already
display the asymptotic convergence rate of about O(κ2) for the error. Let us remark that the energy norm errors (not
shown here) behave as expected, i.e. we see similar convergence rates in h and κ as those reported earlier for the case
of equal holes.

Remark 7.1. We can also expect the distribution of the forces to be unbalanced when the radii are equal, but one hole
is much closer to the boundary than the other. Again, the asymptotic limit may yield an unsatisfactory approximation
to cases where κ > 0, but this will be less of a problem as κ → 0, since the distance to the boundary relative to κ will
then increase and become comparable.

As a final test, we consider the case of five equal circular holes, with centers at y1 = (0, 1
2 ), y2 = ( 1

2 , 0),
y3 = (− 3

4 ,−
3
4 ), y4 = ( 1

2 ,−
1
2 ), y5 = (− 3

4 ,
1
2 ) (Fig. 4). Define Sκ to be the region Ω with squares of side 2κ and

centers yi , i = 1, . . . , 5, removed and denote S = S1/8.
We first fix κ = 1/32 and calculate the relative error for ∥w − Wh∥E,S with decreasing h (where w is our PDE

Toolbox solution described above) using bilinear (p = 1) elements for Wh . We observe the expected O(h) convergence
rate (see Table 8).

As we did for two holes, we now try to isolate the dependence on κ . For Tables 9 and 10, we choose our mesh size
h so that decreasing it further does not significantly change Wh for the κ in the table. We use biquadratics for their
rapid convergence.

We see that the behavior of both ∥w − Wh∥E,S and ∥w − Wh∥E,Sκ is consistent with the asymptotic theory.
Next, let us report results for the computation of the forces. We use biquadratic elements with sufficiently small

mesh size (h = 1/256) to try and isolate the effects due to κ . Note that the asymptotic limiting value is now q0
i = −1.6.
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Table 10
Relative error for ∥w−Wh∥E,Sκ with different κ , p = 2, h = 1/128 (five
holes).

κ
∥w−Wh∥E,Sκ

∥w∥E,Sk
(%) Ratio

1/8 12.46
1/16 5.84 1.85
1/32 2.70 1.95

Table 11
Computed force, p = 2, h = 1/256 (five holes).

κ Q1,h Q2,h Q3,h Q4,h Q5,h

1/8 −1.4872 −1.3363 −1.7013 −1.7540 −1.7212
1/16 −1.5040 −1.4073 −1.6934 −1.6990 −1.6962
1/32 −1.5178 −1.4460 −1.6853 −1.6710 −1.6798

Table 12
Relative error in computed force, p = 2, h = 1/256 (five holes).

k |q1−Q1,h |

|q1|
(%) |q2−Q2,h |

|q2|
(%) |q3−Q3,h |

|q3|
(%) |q4−Q4,h |

|q4|
(%) |q5−Q5,h |

|q5|
(%)

1/8 0.71 1.59 0.94 0.98 0.55
1/16 0.13 0.35 0.22 0.20 0.13
1/32 0.0007 0.08 0.04 0.07 0.01

Table 11 shows a maximum error of about 20% (hole 2, κ = 1/8) if the asymptotic value of −1.6 is used as an
approximation. This, of course, will vary depending on the value of κ and the placement of the holes.

Table 12 shows that the computations are consistent with the expected asymptotic convergence estimate of O(κ2).
Our experiments therefore support the robustness of the method with respect to the number of holes.

8. FE computations for the intuitive model

We now return to the ill-posed Intuitive Model (1), (2), (6) described in the introduction (with K = 1). This model
follows from the “natural” assumption that since the radii σi of the discs are small, the membrane can be regarded
as being supported only at the single points yi . As already stated, this model is incorrect, since the PDE is of second
order, and therefore cannot have point boundary constraints for a two- or higher-dimensional domain. Thus, the model
has no solution in the energy space E(Ω ). Nevertheless, we can still apply the classical FEM to this model to obtain a
finite-dimensional “approximation” wh defined as follows.

As in Section 6, let Vh ⊂ Ω be a conforming FE subspace of continuous piecewise polynomials of degree p ≥ 1
on a mesh of triangles or rectangles on Ω . For simplicity we assume the space is defined in terms of nodal basis
functions, and each yi coincides with a node. Define V 0

h = {v ∈ Vh, v(yi ) = 0, i = 1, 2, . . . , n} . Then we seek
wh ∈ V 0

h satisfying

BΩ (wh, v) =

∫
∂Ω

gv ds ∀v ∈ V 0
h . (86)

The constraints on V 0
h ensure the existence of a unique solutionwh . An approximate QoI E(wh, S) can be immediately

calculated from this.
To determine an approximation for the other QoI, we define

Q0
i,h = BΩ (wh, ηi ), (87)

where ηi ∈ Vh is the nodal basis function that is 1 at yi and vanishes at other nodes. Then it is easily verified that for
all v ∈ Vh ,

BΩ (wh, v) =

n∑
i=1

Q0
i,hv(yi ) +

∫
∂Ω

gv ds. (88)
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Table 13
Estimated relative error in energy, p = 1 (Intuitive Model, κ = 0).

h E0
h

|E0
h−E0

h/2|

|E0
h/2|

(%)

1/16 15.5425 0.54
1/32 15.6273 0.13
1/64 15.6483 0.04
1/128 15.6548 0.02
1/256 15.6575

Table 14
Estimated relative error in energy, p = 1 (Basic Model, κ = 1/32).

h Eκh
|Eκh −Eκh/2|

|Eκh/2|
(%)

1/16 15.5769 0.30
1/32 15.6245 0.08
1/64 15.6367 0.02
1/128 15.6379 0.01
1/256 15.6405

Substituting v = 1 in (88) leads to the required condition
n∑

i=1

Q0
i,h = −G.

Let us mention that for actual implementation, Q0
i,h can be easily recovered from wh using the full stiffness matrix

corresponding to the form BΩ (·, ·) over Vh .
We now present the results of some computations with the above FE method based on the Intuitive Model. We take

Ω = (−1, 1)2 with holes centered at y1 = (0, 0) and y2 = ( 1
2 , 0) (Fig. 3) and let the hole radii σ1 = σ2 = κ = 0. We

let g = 1 as in Section 7, and use bilinear finite elements on a uniform mesh of rectangles. Since we do not know the
exact value of the first QoI, the energy, we estimate the relative error in energy via the usual computational technique
of comparing E0

h = E(wh, S) and E0
h/2 = E(wh/2, S). Here, S = [−1, 1]2

\ ([− 1
8 ,

1
8 ]2

∪ [ 3
8 ,

5
8 ] × [− 1

8 ,
1
8 ]).

We observe from Table 13 that the estimated error is extremely small, and moreover decreases comparably to
the O(h2) rate expected with bilinear elements (in the spirit of Corollary 6.2.1). From the standpoint of engineering
assessment, the value of E0

h would be regarded to have converged.
Is the above convergence test reliable? To assess this, we perform the same test for the case of holes with finite

radius σ1 = σ2 = κ = 1/32. The resulting values, shown in Table 14, are computed using the modified FEM on
the Basic Model. We observe similar O(h2) convergence, and also see that the value of the energy over S for the
two cases is close. Since we have theoretically established the convergence in the case of the Basic Model, we know
the computed values for Eκ

h in Table 14 are accurate, suggesting the test is reliable. So with this reassurance, we
can conclude that the test shown in Table 13 is reliable as well, and the values for E0

h are, indeed, converging to the
asymptotic value of our energy QoI.

We now compute our second QoI Q0
i,h , using the Intuitive Model as explained above. Once again, we estimate

the relative error by comparing Q0
i,h with Q0

i,h/2. Columns 3 and 6 of Table 15 show this error as being extremely
small (though decreasing much slower than O(h)), leading us again to the conclusion that our computed values have
converged. Moreover, the fact that the sum of the computed forces equals −8, and hence satisfies an equilibrium
check, might give us additional confidence in our results.

The question the above tests for convergence do not answer, however, is what we have converged to. For instance,
if we are performing calculations on this limiting Intuitive Model hoping to get good approximations for the case
κ = 1/4 and unequal holes discussed in the previous section (see Table 7), then our recovered value of Q0

2,h above is
about twice the actual desired value, leading to a relative error of almost 100%. Even for κ = 1/32, our relative error
is about 33%. This shows the danger in relying solely on convergence tests and other numerical checks.

Instead, an understanding of the underlying analytic situation is needed to correctly interpret the above results.
This includes an awareness that at best, we should expect the Intuitive Model to only yield an approximation to the
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Table 15
Estimated and exact relative errors in forces, p = 1 (Intuitive Model, κ = 0).

h Q0
1,h

|Q0
1,h−Q0

1,h/2|

|Q0
1,h/2|

(%)
|Q0

1,h−q0
1 |

|q0
1 |

(%) Q0
2,h

|Q0
2,h−Q0

2,h/2|

|Q0
2,h/2|

(%)
|Q0

2,h−q0
2 |

|q0
2 |

(%)

1/16 −4.1085 0.36 2.71 −3.8915 0.38 2.71
1/32 −4.0937 0.28 2.34 −3.9063 0.29 2.34
1/64 −4.0824 0.22 2.06 −3.9176 0.22 2.06
1/128 −4.0736 0.18 1.84 −3.9264 0.18 1.84
1/256 −4.0664 1.66 −3.9336 1.66

asymptotic limits of our QoI, which (as discussed in the previous section) may or may not be close to the values for
κ > 0. With deeper analysis comes the knowledge that in the limiting case the forces are distributed equally (no matter
what the relative sizes of the actual holes are in reality). Using this, one can calculate the exact error, as we have done
in columns 4 and 7 of Table 15. These show that each Q0

i,h does, indeed, appear to be converging to its asymptotic
limit, but the true error is about ten times as large as the estimated one.

Columns 4 and 7 also indicate that the observed convergence in h is very slow (O(|log h|
−1) at best). In fact, there

is no guarantee that QoI obtained from discretizing the Intuitive Model will converge to the expected asymptotic limits
(or at all). As computational results in Section 17.1 of [8] for the related lug problem from elasticity show, the intuitive
FE solution can be completely mesh dependent. One reason that our results in Tables 13 and 15 are so well-behaved is
that we have taken a uniform mesh. For such meshes, it is known (see e.g. [32]) that the finite element approximation
of problems like (21) with delta functions as data satisfy ∥φi −φi,h∥0,Ω ≤ Ch. (Such problems are what we essentially
end up solving due to the presence of terms v(yi ) in (88) derived from point constraints.) If, instead, we refined the
mesh only in the vicinity of one hole, we would capture the logarithmic singularity there much better, skewing the
results.

In this connection, let us remark that in addition to its ill-posedness, the Intuitive Model has the further disadvantage
of being the “natural” limiting case for several different scenarios. One such scenario is the case we considered in
Remark 4.2, where the holes converged to 0 at unequal rates. This gives rise to a different limiting distribution of
forces (51), which, arguably, is an equally valid candidate for the intuitive FE discretizations to converge to. Perhaps
with an appropriately designed mesh, they would.

Our conclusion is therefore that the Intuitive Model should be used with much caution, and only with substantial
analytic understanding of the underlying problem. Let us add that our discussion has only related to the verification
aspect of the modeling, and not the validation aspect. The latter would include, for instance, the uncertainty in the
QoI due to a large gradient in the solution or due to the type of membrane. Often, verification and validation are only
performed for simple cases, and this can be very misleading.

9. Summary and conclusions

This paper addresses the problem of determining two quantities of interest for the prestressed membrane supported
by discs of small radius. This is a representative example of problems posed over domains with small exclusions, with
Neumann conditions applied to the outer boundary and Dirichlet conditions to the boundaries of the exclusions. The
first question considered is the choice of underlying mathematical model. In the Basic Model, the discs have finite
radii σi > 0. In the Intuitive Model, the physically intuitive limiting case of σi = 0 is taken, which is equivalent to
applying point constraints to the membrane. Such “simplifications” occur often enough in engineering practice (see
e.g. [4,7,8]), yielding reasonable-appearing FE approximations that can pass common verification tests.

However, point constraints are mathematically inadmissible for such problems, and applying them to the membrane
causes the energy of the exact solution to become infinite. Hence this intuitive approach is incorrect. Consequently,
the error in the approximations can be unacceptably large. The first source of error is the difference between the exact
solution (of the Basic Model) for σi > 0 and its asymptotic limit as σi → 0. As shown theoretically in Theorems 5.4
and 5.6 and computationally in Section 7, this can lead to significant differences between the QoI for σi > 0 and their
asymptotic limits.

A second source of error arises from trying to approximate an ill-posed problem by the FEM. As shown in
Section 8, point constraints are enough to guarantee a unique solution to the FE problem, which moreover are likely
to satisfy practically used convergence tests. However, the actual accuracy can be very poor, not only because of the
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asymptotic error already mentioned, but also because the FE approximations can be significantly different for different
meshes. Consequently, common verification tests for the Intuitive Model cannot be trusted, and results obtained from
it must be interpreted with a great deal of caution.

The take-away is that a mathematics-informed approach is needed towards such problems, formulating which is the
second issue addressed in this paper. The fundamental ingredient of this approach is to use the Basic Model (7)–(9)
for the solution w. The second ingredient is to transform the problem into one whose limit remains bounded in L2 as
σ → 0. This avoids the computationally undesirable effect of the solution getting large everywhere. The reformulated
solution (u, A) satisfies (15)–(18), where A is a new unknown representing the vertical distance the holes can move
up or down.

The third ingredient is to use a priori information of the existence of logarithmic singularities at the holes in
designing the FEM. Essentially, these singularities are carried over to the computed solution, and only the smooth
remainder is approximated by finite elements. The holes are not meshed, and a uniform grid can be used. This modified
FEM is summarized as follows:
Step 1. Define the logarithmic singularities φi , i = 1, 2, . . . , n by (20).
Step 2. Calculate FE approximations ψi,h to the components of the smooth remainder, using Eqs. (69)–(70).
Step 3. Use φi , ψi,h to form the (n+1)×(n+1) system of linear equations (74)–(75), and solve it to obtain coefficients
(ci,h, dh).
Step 4. Use φi , ψi,h, ci,h, dh in the linear combination (80) to get Uh , the approximation to u or Wh , the approximation
to w.

Since only smooth functions are approximated, the FEM gives high (optimal) convergence without any special
refinement, thus saving the (human) cost involved in meshing the holes. Theorems 6.2 and 6.3 show the uniform h
version with degree p essentially yields O(κ4

+ h2p) convergence in the energy and O(κ2
+ h p) in the force (where

the radii are proportional to κ). Computational results presented in Section 7 demonstrate good agreement with these
asymptotic estimates for a practical range of parameters.

The modified FE approach can be generalized to anisotropic materials and different operators (such as elasticity or
the 3D Laplacian) by adjusting the singularities used in Step 1 (see Remarks 3.2 and 4.3). It can also be generalized to
holes of arbitrary shape by changing the coefficients in Eq. (75) used in Step 3 (see Remark 3.1). Higher-order (in κ)
extensions can also be formulated (see Remark 5.1). The method is not needed for other pairings of Dirichlet and/or
Neumann boundary conditions (see Remark 2.2).

To conclude, the mathematics-informed approach demonstrates the important role that an understanding of the
underlying analytic situation plays. In the absence of such understanding, computations obtained using intuitive
methods can appear deceptively convincing and lead to erroneous results.
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