MATH 301 In-class activity: Absolute Value and ε neighborhoods

1. For each, say whether always true or could be possibly false. If false, give a counterexample and a possible corrected statement. If true, think of a proof.
(a) If $a<b$, then since $2<3$, we must have $a-2<b-3$
(b) If $a<b$, then since $2<3$, we must have $a+2<b+3$
(c) If $a<b$, then since $2<3$, we must have $2 a<3 b$
(d) If $a<b$, then since $2<3$, we must have $a \div 2<b \div 3$
2. For each, say whether always true or could be possibly false. If false, give a counterexample and a possible corrected statement. If true, think of a proof.
(a) If $|a|<x$ and $|b|<y$ then $|a-b|<x-y$
(b) If $|a+b|<x$ then $|a|+|b|<x$
(c) If $a+b<x$ then $|a+b|<x$
(d) If $|a|<x$ and $|b|<y$ then $|a|-|b|<x-y$
(e) If $|a-x|<2$ and $|b-x|<3$ then $|a+b|<5$
(f) If $a+b<x$ and $-(a+b)<x$ then $(a+b)^{2}<x^{2}$
3. For each, say whether always true or could be possibly false. If false, give a counterexample and a possible corrected statement. If true, think of a proof.
(a) Suppose $a \in V_{\varepsilon}(b)$. Then $b \in V_{\varepsilon}(a)$.
(b) Suppose $a \epsilon V_{\varepsilon}(b)$. Then $b \epsilon V_{\delta}(a)$ for any $\delta \leq \varepsilon$.
(c) Suppose $x \in V_{\varepsilon}(a) \cap V_{\varepsilon}(b)$. Then x lies between a and b.
(d) Suppose $x \in V_{\varepsilon}(a) \cup V_{\varepsilon}(b)$. Then $\max \{|x-a|,|x-b|\} \leq \varepsilon$.
(e) Suppose $V_{\varepsilon}(a) \subset V_{\delta}(b)$. Then $\varepsilon \leq \delta$.
(f) Suppose $V_{\varepsilon}(a) \subset V_{\delta}(b)$. Then $|a-b|<\delta$.
